If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying x + -1(0.35(x2)) = 4.5 Remove parenthesis around (0.35x2) x + -1 * 0.35x2 = 4.5 Multiply -1 * 0.35 x + -0.35x2 = 4.5 Solving x + -0.35x2 = 4.5 Solving for variable 'x'. Reorder the terms: -4.5 + x + -0.35x2 = 4.5 + -4.5 Combine like terms: 4.5 + -4.5 = 0.0 -4.5 + x + -0.35x2 = 0.0 Begin completing the square. Divide all terms by -0.35 the coefficient of the squared term: Divide each side by '-0.35'. 12.85714286 + -2.857142857x + x2 = 0 Move the constant term to the right: Add '-12.85714286' to each side of the equation. 12.85714286 + -2.857142857x + -12.85714286 + x2 = 0 + -12.85714286 Reorder the terms: 12.85714286 + -12.85714286 + -2.857142857x + x2 = 0 + -12.85714286 Combine like terms: 12.85714286 + -12.85714286 = 0.00000000 0.00000000 + -2.857142857x + x2 = 0 + -12.85714286 -2.857142857x + x2 = 0 + -12.85714286 Combine like terms: 0 + -12.85714286 = -12.85714286 -2.857142857x + x2 = -12.85714286 The x term is x. Take half its coefficient (0.5). Square it (0.25) and add it to both sides. Add '0.25' to each side of the equation. -2.857142857x + 0.25 + x2 = -12.85714286 + 0.25 Reorder the terms: 0.25 + -2.857142857x + x2 = -12.85714286 + 0.25 Combine like terms: -12.85714286 + 0.25 = -12.60714286 0.25 + -2.857142857x + x2 = -12.60714286 Factor a perfect square on the left side: (x + 0.5)(x + 0.5) = -12.60714286 Can't calculate square root of the right side. The solution to this equation could not be determined.
| x^2+y^2-8x-12y+36=0 | | -2/5b=10 | | 6a+10=-110-9a | | 3n+3+n=11 | | 6a+10=110-9a | | 1f+2f+2f-f+f+4f= | | n-58*2/3=3/4 | | x+x(0.13)=58.76 | | 4t+m-3t+5m= | | 5x+2=-3x+10 | | X+0.01=-0.35 | | 8=a-4+2a | | Z^2+43=25 | | G(-1)=2x^2+6 | | 40-4a=10-10a | | 8x^2+3x-81=0 | | 2=-x+3x | | 2n-2=-6/5 | | 4a+9=-15-2a | | 2p-4p= | | G(-7)=2x^2+6 | | Ln(2x)=x-4 | | 3x=x-17 | | x+105=2x | | 7+9a=15+a | | 3p-2+1=5 | | x-2x=105 | | 4a+38=13a-61 | | g(x)=4x^2-7x+1 | | 7w+3-w+9-2w= | | x+x=105 | | 4a-1=11a-29 |